Pioneer: Value of Row Width in Soybean Production

Published On
Soy Articles

Row width is one of the management practices most often
considered by growers as potentially important to increased
soybean yields and profits.

For that reason, numerous
research studies have been conducted over the last 40 years
to determine optimal soybean row spacing. In general,
studies have found that soybean yield potential is usually
greater with row spacings narrower than 30 inches. Despite
these relatively consistent results, narrow-row soybean
adoption has varied widely across North America. This Pioneer Crop
Insights
reviews research results, current row spacing trends
and factors beyond yield potential that may influence row
spacing preferences of soybean growers.

Extensive research studies conducted over many locations and
years have compared drilled narrow rows versus 30-inch
rows in soybeans, and generally have shown a significant
yield advantage for drilled narrow rows. A compilation of
these studies by Purdue University researchers in 2003
showed an average 6.2 bushel per acre yield advantage for
drilled soybeans (Lambert and Lowenberg-DeBoer). In
recent years, however, drilled soybeans have fallen out of
favor in many areas, likely due to inferior seed placement and
singulation capabilities of drills versus planters, and the cost
of planting additional seeds.

As a result, soybeans planted in 15-inch rows have gained in
popularity as a way to capture some of the yield benefit of
drilled narrow rows while using a planter instead of a drill.
Research on soybeans in 15-inch rows is less extensive,
having been conducted mostly within the last 10 to 15 years
as this row spacing has gained popularity.

Recent Row Spacing Research

A review of soybean row spacing studies published within
the past 10 years generally confirms previous results
comparing 30-inch rows and drilled narrow rows. In five
studies, drilled soybeans outyielded 30-inch row soybeans by
an average of 4.1 bushels per acre (Figure 1, Table 1). Six
studies that compared 30-inch rows and 15-inch rows found
similar results, with 15-inch rows holding a 3.6 bushel per
acre yield advantage. Yields were similar between 15-inch
row and drilled narrow-row soybeans in these studies.

Average Yield Results from Seven Soybean Row
Spacing Studies Published During the Last 10 Years.

Table 1. Locations, years and row spacings included in
soybean row spacing studies summarized in Figure 1.

Because most of these studies used higher seeding rates with
narrower row spacings, increased seed costs partially offset
the yield benefit associated with narrow rows. Higher seeding
rates with narrower rows have been a common practice,
particularly with drilled soybean; however, not all research
supports this practice.

A study conducted in 2008-2009 (Cox
and Cherney, 2011) found no row spacing by seeding rate
interaction for soybeans planted in 7.5-inch, 15-inch and 30-
inch spacings. Recent research conducted in Iowa had similar
results, indicating that narrow-row systems do not necessarily
require a greater harvest stand to maximize yield (Pedersen,
2008). Historically, less accurate seed placement made higher
seeding rates necessary with drills; however, improved seed
placement with newer precision drills has reduced this need.
In light of these findings, seed cost may not be a requisite
consideration for row spacing decisions.

Conditions favoring narrow rows

Research has shown that soybeans need to attain 95 percent
light interception by early reproductive growth to maximize
yield, which requires a leaf area index of 3.5 to 4.0 (Board
and Harville, 1992). Narrower row spacings are likely to
provide a greater yield benefit in systems where soybeans
have a limited time frame for vegetative growth prior to
flowering.

Such scenarios include northern soybean-producing
regions where the growing season is shorter (Lee,
2006), early soybean production systems where short
maturity varieties are planted early to avoid drought
(Holshouser and Whittaker, 2002), delayed planting situations
(Lee, 2006), and double-crop systems (Minor and Wiebold,
1998; Holshouser et al., 2006).

Conditions that may not favor narrow rows

Research also has shown that narrow rows may have reduced
or no yield advantage under some conditions. Several
experiments over the years have shown that moisture stress
can reduce the yield benefit of narrow rows (DeBruin and
Pedersen, 2008). Brown stem rot, white mold, nitrogen stress
and soybean cyst nematode also may tend to negate the benefit of narrow rows (Cooper and Jeffers, 1984; Pedersen
and Lauer, 2003).

Row spacing research in corn generally has shown the yield
advantage with narrow rows diminishes outside of northern
Corn Belt latitudes, since corn grown in the central Corn Belt
and south is better able to attain maximum light interception
prior to flowering (Butzen and Paszkiewicz, 2008). No such
trend has been observed consistently in soybeans when
planting at optimum timings, although narrow rows have
proven advantageous with late planting regardless of latitude
(Lee, 2006).

Current Row Spacing Trends

In recent years, soybean acreage in North America has been
somewhat evenly divided between less than 12-inch (drilled),
15-inch and 30-inch row spacings (Figure 2).

Soybean Row Spacings (in inches) in North
America as a Percentage of Total Acres, Average 2006-2011.

 

Soybean Row Spacings (in inches) in the Four
Largest Soybean-Producing
States in 2009 as a Percent of
Total Acres (USDA-NASS).

However, row spacing practices vary widely across different
areas. Among the four largest soybean-producing states there
are substantial differences in row spacing practices, with a
majority of growers in Illinois and Indiana favoring 15-inch
and narrower spacings, compared to Iowa and Minnesota
where soybeans planted in 30-inch rows are much more
common (Figure 3).

Row spacings of 36 inches and wider are
rare in the northern and central Corn Belt, but more common
in southern raised-bed systems. Similarly, 22-inch rows are
common in sugar beet-producing areas such as Minnesota,
but are not generally found elsewhere.

One consistent trend across North America over the last
several years has been the move away from drilled soybeans.
Drilled soybeans have declined from 29 percent of soybean
acres in 2006 to 21 percent in 2011 (Figure 4). Even in areas
such as Canada and the northeastern U.S. where drilled
narrow rows are still the most common soybean row
configuration, drilled acreage has dropped over the last five
years.

Planters generally provide better seed placement and
seedling emergence than drills, which has helped reduce
seeding rates and associated costs, although improvements in
seed placement with newer drills make this less of an issue
than it has been in the past (Holshouser et al., 2006).

Changes in Soybean Acreage Planted in the Most
Common Row
Spacings from 2006 to 2011 in North
America.

In many cases, this decline in drilled soybeans has been
accompanied by an increase in acres planted to 15-inch rows,
which is now the most common row spacing for soybeans.
However, acreage planted to 30-inch rows also has increased
in almost all regions of North America over the last few
years, reversing the long-term trend away from wide rows. In
some areas, this increase has been substantial. For example,
Illinois went from 18 percent to 29 percent of soybean acres
planted to 30-inch rows over the last five years (USDA-NASS
survey). This recent shift toward wider row spacings
runs counter to the higher yields consistently demonstrated in
narrower rows, which indicates that other factors beyond
yield are driving grower decisions in this area.

Factors Driving Row Spacing Trends

Equipment and Time Management

Other than yield, the most important factor driving soybean
row spacing practices is equipment and time management
during the planting season. One of the key issues growers
must consider is whether the economics of their farm justifies
having a machine dedicated specifically to planting soybeans.

Larger farms are more able to justify the expense of a
dedicated soybean planter and provide an operator for it.
Thus, they are more likely to be planting soybeans in 15-inch
rows (Figure 5). For smaller farms, it may be more practical
to share a soybean planter with another crop, such as a drill
with wheat or a 30-inch planter with corn. This often results in
more 30-inch or drilled soybeans for smaller farms (Figure 5)

Soybean Row Spacing Utilization According to
Farm Size in 2011
(Small = 100-249 Soybean Acres,
Medium = 250-499 Soybean Acres, Large = 500+ Soybean
Acres).

As farms get larger, more acres must be planted in a shorter
amount of time. Wet conditions in many areas during the last
few planting seasons have exacerbated this situation by
creating very short and intermittent planting windows. To
plant more acres during the available window, some growers
have opted to use their 30-inch planter for soybeans. Because
30-inch planters are typically wider than 15-inch planters,
they can cover the ground more quickly.

Another option –
owning a second planter specifically for soybeans – allows
both crops to be planted at the same time, resulting in earlier
completion of soybean planting. However, the total number
of operator hours spent planting would be greater and the
second planter would require a second operator, which may
not always be feasible.

It is difficult to weigh the potential yield benefit of narrow-row
soybeans against equipment costs, time constraints and
operator availability required. Equipment and workload
considerations are unique for every farm operation and ultimately
come down to the needs of each individual grower.

White Mold

>

A key factor driving the
recent increase in soybeans
planted in 30-inch rows,
particularly in Illinois, is
Sclerotinia stem rot
(Sclerotinia sclerotiorum),
or white mold. White mold
development is favored by
cool and wet conditions
during soybean flowering.
Such conditions were widespread
in the Midwestern U.S. in 2009, and so was white mold
incidence. A dense soybean canopy can enhance these
conditions and increase white mold severity. The rationale
behind increasing row spacing is to increase light penetration
and air movement in the lower canopy, thereby making
conditions less favorable for white mold development.

Soybean variety selection, row spacing and seeding rate are
important factors influencing white mold development and a
good management strategy should address all three. Seeding
rate generally appears to have a greater effect on white mold
severity than row spacing (Lee et al., 2005). Changing from
drilled narrow-row soybeans to 15-inch row spacing in areas
where white mold is prevalent is likely a good move,
particularly when accompanied by a reduction in seeding
rate.

The benefit of moving to a 30-inch spacing is less clear
and is not generally recommended by university pathologists
for reducing white mold, particularly given the likely
reduction in yield potential. However, in areas with frequent
white mold incidence, wide rows may provide some benefit.

Other Row Spacing Considerations

Foliar Fungicide and Insecticide Applications

The need for fungicide and/or insecticide applications may
also impact row spacing decisions. When an application is
made during vegetative growth, plants are generally able to
compensate for damage caused by the sprayer wheels with
little reduction in yield. For applications made following the
R1 growth stage, which would include most foliar fungicide
and insecticide applications, wheel damaged areas will have
lower yield.

A research study conducted in Delaware and
Virginia found significant yield reductions due to sprayer
wheel damage in R4 soybeans planted in 7.5-inch and 15-
inch row spacings, whereas soybeans planted in 30-inch and
wider row spacings did not sustain any sprayer wheel damage
(Holshouser and Taylor, 2008). Actual yield loss due to
wheel traffic will vary according to boom width (Table 2).

Although 30-inch rows would generally be expected to allow
sprayer wheels to pass through without damage, wheel traffic
damage may not always be negligible. A study conducted by
Purdue University found that yield loss can occur if the
wheels are not kept precisely between the rows, which may be difficult when operating at high speeds (Hanna et al.,
2008).

Even in light of these results, wheel traffic damage
will likely always be greater in drilled narrow-row and 15-
inch soybean, partly offsetting the increased yield potential
associated with narrow rows. For example, the average yield
benefit of 15-inch rows relative to 30-inch rows is reduced by
more than one-third when accounting for the wheel traffic
damage of a ground application during reproductive growth,
assuming a 90-foot boom width (Figure 1 and Table 2).

Table 2. Soybean yield loss due to sprayer wheel damage in
7.5-inch and 15-inch row spacings with four different boom
widths (Holshouser and Taylor, 2008).

 

Because fungicides are only locally systemic and are not
translocated from upper to lower portions of the canopy,
spray coverage is critical for maximum efficacy. For that
reason, it is important to consider the effect of row spacing
on spray coverage. Purdue University research found that
spray penetration into the lower canopy was similar among
soybeans planted in 7.5-, 15- and 30-inch row spacings and
that a minimum carrier volume of 15 GPA was more
important to maximize spray coverage (Hanna et al., 2008)
than was row spacing.

Weed Control

The growing prevalence of weed populations resistant to
glyphosate has made weed management more challenging in
some areas; consequently, it is becoming increasingly
necessary to consider the impact of cropping system factors
such as row spacing on weed growth. In general, weed
growth will be reduced in soybeans planted in narrower row
spacings, and earlier shading by the soybean canopy will help suppress the emergence of new weeds. The extent of this
effect will vary by weed species and weed emergence timing
relative to the crop (Hock et al., 2006).

Planting and Harvest Efficiency

Crop residue can be an important consideration when
planting soybeans, particularly in the northern Corn Belt
where residue management is more of a challenge. Some
growers in high residue systems prefer wider rows because
there is more room to deposit residue between the rows,
which helps prevent residue interference with planting and
emergence.

Narrow-row soybeans offer some harvestability advantages
over soybeans in 30-inch rows. The lowest pods will tend to
be higher in narrow-row soybeans, potentially reducing
harvest losses. The more even distribution of plants in narrow
rows also allows plants to feed into the combine head more
smoothly, although some growers have found that harvesting
30-inch row soybeans at an angle can help improve
harvestability.

Summary

  • Recent research studies have shown a 3 to 4 bushel per
    acre yield advantage with drilled narrow-row and 15-inch
    row soybeans over soybeans in 30-inch rows.
  • Soybean row spacing preferences vary greatly across the
    Midwestern U.S., with narrow rows (15 inches or less)
    favored in Illinois and Indiana, and 30-inch rows more
    common in Iowa and Minnesota.
  • The relatively limited adoption of narrow-row soybeans in
    some areas indicates that factors other than yield potential
    are influencing grower decisions.
  • Soybean acreage in drilled narrow rows has declined
    across North America in the last five years, while acreage
    in 15-inch rows has increased.
  • 30-inch rows have increased in some areas, in part to
    mitigate Sclerotinia stem rot, or white mold.
  • Factors such as equipment costs, workload management,
    planting and harvest efficiency, and weed and disease
    control can all influence the economic viability of narrowrow
    soybeans.

Conclusions

Recent research studies have shown a 3 to 4 bushel per acre
yield advantage for soybeans planted in drilled narrow rows
or 15-inch rows compared to 30-inch rows. In spite of this
clear advantage, row spacing preferences vary greatly across
North America, and 30-inch row soybeans are common and
even gaining in many areas. This demonstrates that many
different considerations beyond simply yield potential can
affect the best practices for each individual grower. Factors
such as equipment costs, workload management and disease
management all play an important role.

When those issues
are accounted for, narrow-row planting is not necessarily the
best economic choice for all operations. Because of this
complexity, no one-size-fits-all answer should be applied.
Rather, growers should carefully consider the costs, risks and
benefits of soybean row spacing options in their farming
operations.

February 2012

Leave a Comment