news, features, articles and disease information for the crop industry


Chemical Sign for Photosynthesis Allows Better Productivity Measurement

Chemical Sign for Photosynthesis Allows Better Productivity Measurement

13 May 2015

US - Photosynthesis leaves behind a unique calling card in the form of a chemical signature from stable oxygen isotopes, researchers from the University of California Los Angeles have reported.

The isotopic signature could be used, for example, to assess the health of oceans, said lead author Laurence Yeung.

Photosynthesis by microscopic plants forms the base of the oceanic food chain, but it is difficult to measure how productive these plants are in natural settings. This research will make it easier to do so.

"We've found a new type of biosignature," said Mr Yeung, now an assistant professor of Earth science at Rice University.

"We show that plants and plankton impart this type of biosignature on the oxygen they produce during photosynthesis."

Most oxygen atoms contain eight protons and eight neutrons and are represented by the symbol O-16. More than 99.9 percent of Earth's oxygen is O-16, but two heavier oxygen isotopes exist in trace amounts: O-17, with one extra neutron, and O-18, with two.

Scientists know that plants and animals sometimes process heavy isotopes like O-17 and O-18 at a different pace than O-16.

For instance, when sea temperatures decrease, corals and molluscs produce calcium carbonate, the raw material of ocean reefs and shells, that contains greater amounts of heavy oxygen isotopes.

As a result, scientists have used isotopic ratios from carbonate fossils to estimate global temperatures in the distant past.

In the new study, the researchers examined "clumped" oxygen isotopes, oxygen molecules that contain two heavy isotopes.

Such molecules, which have masses of 35 or 36, are exceptionally rare; less than a handful exist in every trillion oxygen molecules.

However, today's technology is sophisticated enough to tally them and allow scientists the opportunity to compare their relative abundance in various circumstances.

The new research shows that biological assembly of molecules produces molecules that have pairings of isotopes that violate expectations from both thermodynamics and sheer chance.

Edward Young, the study's senior author, said the new research elucidates a general principle that may apply to a wide range of processes in nature.

"This study introduces an entirely new way of determining how oxygen specifically, and other gases more generally, are produced in nature," Mr Young said.

"Our work demonstrates that the propensity of different isotopes to bond with one another in a molecule is a heretofore unrecognised, yet powerful tracer of the biological origin of that molecule."

Looking at oxygen through the lens of clumped isotopes will provide a great deal of new information about how oxygen is made and consumed by plants, said co-lead author Jeanine Ash, a graduate student in Young's laboratory.

"There are so many other gases that the biosphere utilises," she said. "This is only the beginning."

Further Reading

You can view the full report and author list by clicking here.

TheCropSite News Desk

Our Sponsors